Lowness for Effective Hausdorff Dimension
نویسندگان
چکیده
We examine the sequences A that are low for dimension, i.e., those for which the effective (Hausdorff) dimension relative to A is the same as the unrelativized effective dimension. Lowness for dimension is a weakening of lowness for randomness, a central notion in effective randomness. By considering analogues of characterizations of lowness for randomness, we show that lowness for dimension can be characterized in several ways. It is equivalent to lowishness for randomness, namely, that every Martin-Löf random sequence has effective dimension 1 relative to A, and lowishness for K, namely, that the limit of KA(n)/K(n) is 1. We show that there is a perfect Π1-class of low for dimension sequences. Since there are only countably many low for random sequences, many more sequences are low for dimension. Finally, we prove that every low for dimension is jump-traceable in order nε, for any ε > 0.
منابع مشابه
A real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one
Recently, the Dimension Problem for effective Hausdorff dimension was solved by J. Miller in [Mil], where the author constructs a Turing degree of non-integral Hausdorff dimension. In this article we settle the Dimension Problem for effective packing dimension by constructing a real of strictly positive effective packing dimension that does not compute a real of effective packing dimension one ...
متن کاملThema Computability and Fractal Dimension
This thesis combines computability theory and various notions of fractal dimension, mainly Hausdorff dimension. An algorithmic approach to Hausdorff measures makes it possible to define the Hausdorff dimension of individual points instead of sets in a metric space. This idea was first realized by Lutz (2000b). Working in the Cantor space 2ω of all infinite binary sequences, we study the theory ...
متن کاملComputability and fractal dimension
This thesis combines computability theory and various notions of fractal dimension, mainly Hausdorff dimension. An algorithmic approach to Hausdorff measures makes it possible to define the Hausdorff dimension of individual points instead of sets in a metric space. This idea was first realized by Lutz (2000b). Working in the Cantor space 2ω of all infinite binary sequences, we study the theory ...
متن کاملHistoric set carries full hausdorff dimension
We prove that the historic set for ratio of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional non-uniformly hyperbolic dynamical systems.
متن کاملTuring Degrees of Reals of Positive Effective Packing Dimension
A relatively longstanding question in algorithmic randomness is Jan Reimann’s question whether there is a Turing cone of broken dimension. That is, is there a real A such that {B : B ≤T A} contains no 1-random real, yet contains elements of nonzero effective Hausdorff Dimension? We show that the answer is affirmative if Hausdorff dimension is replaced by its inner analogue packing dimension. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014